Esta página está en construcción: perdonen los errores, repeticiones y temas inacabados.
 
This page is being developed: I am sorry for errors, duplications  and unfinished subjects.
 
 
Proyecto Danzante. Manejo de objetos virtuales VI. Poliedros de revolución (incluido en Danzante)
 
A raíz de la nueva introducción de Manejo de objetos virtuales I  y II. Cubos, y III. Poliedros , lo extendemos a los poliedros del título o sea, a  prismas y pirámides que devienen casi conos, cilindros y toros, al aumentar el número de lados del polígono generador.
 
Se definen por una ley en coordenadas polares.
 
Prismas.
 
Se define el polígono de la base, regular sobre un circulo, y se traslada una cierta distancia, la altura H.
Se definen las ligaduras para el polígono, una sola rama y se aplica
Parámetros: R, n y H, radio, altura y numero de lados-ángulos.
 
Polígonos.
 
Se define el polígono de la base, regular sobre un circulo, y se traslada una distancia nula: en el espacio un polígono es un prisma de altura nula.
Parámetros: R, n,  radio y numero de lados-ángulos.
 
Círculos.
 
Son polígonos con un número suficientemente alto de lados para que parezca un círculo. Por ejemplo n=40 basta para crear la ilusión. Naturalmente aumentar el número de lados ralentiza el dibujo, especialmente en la rotación continua de una de las figuras (MOVIL)
Nótese que los círculos y elipses proporcionados por las rutinas de base, no admiten los movimiento geométricos definidos mediante matrices de giro para cada punto, ni la corrección de distancia aparente que aplicamos.
Parámetros: R,  radio.
 
Pirámides.
 
Se define el polígono de la base, regular sobre in circulo, y se traslada una cierta distancia, la alturas.
Sed fine las ligaduras para el polígono, una sola rama y se aplica
Parámetros: R, n y H, radio, altura y numero de lados-ángulos.
Toros.
 
Se define el polígono de la base, regular sobre in circulo, y se traslada una cierta distancia, la alturas.
Sed fine las ligaduras para el polígono, una sola rama y se aplica
Parámetros: R, n y H, radio, altura y numero de lados-ángulos.
 
Botellas.
 
Se define el polígono de la base, regular sobre in circulo, y se traslada una cierta distancia, la alturas.
Se definen las ligaduras para el polígono, una sola rama y se aplica
Parámetros: R, n y H, radio, altura y numero de lados-ángulos.
 
Ramas de enlaces o aristas
 
Para todos ellos resulta sencillo y operativo (para dibujar) el uso de ramas  que cubren para una altura el perímetro del sólido de revolución, ya encontradas útiles en el cuadrado --un prisma de revolución--: son módulos de tipo C, que cubren rectángulos radiales sucesivos, de tipo L, para triángulos. O sea,. para n-polígonos radiales sucesivos se usan ramas n-1. Estos módulos simples se combinan en S o zigzags que cubren radialmente al repetirse y que enlazan cada radio con el siguiente. Cuidado con los enlaces entre primero y último.
 
 

 
Vuelta al Principio    Última actualización: sábado, 31 de diciembre de 2016    Visitantes:contador de visitas